

1
2
3
4
5
6
7 **In silico λ -dynamics predicts protein binding specificities to modified RNAs**
8
9
10
11

12 Murphy Angelo¹, Wen Zhang^{1,2*}, Jonah Z. Vilseck^{1,3*}, Scott T. Aoki^{1,2*}
13
14
15

16 ¹ Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635
17 Barnhill Drive, Indianapolis, IN 46202, USA

18 ² Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, USA

19 ³ Center for Computational Biology and Bioinformatics, Indiana University School of Medicine,
20 Indianapolis, IN 46202, USA

21
22
23
24
25
26
27 Running head: λ -Dynamics predicts protein interactions with modified RNA
28

29 Keywords: RNA modifications, RNA-protein interactions, in silico modeling, molecular dynamics,
30 lambda-dynamics

31
32 *Corresponding authors: W. Zhang (wz15@iu.edu); J.Z. Vilseck (jvilseck@iu.edu); S.T. Aoki
33 (staoki@iu.edu)
34
35

36 **Abstract**

37 RNA modifications shape gene expression through a smorgasbord of chemical changes to
38 canonical RNA bases. Although numbering in the hundreds, only a few RNA modifications are
39 well characterized, in part due to the absence of methods to identify modification sites. Antibodies
40 remain a common tool to identify modified RNA and infer modification sites through
41 straightforward applications. However, specificity issues can result in off-target binding and
42 confound conclusions. This work utilizes in silico λ -dynamics to efficiently estimate binding free
43 energy differences of modification-targeting antibodies between a variety of naturally occurring
44 RNA modifications. Crystal structures of inosine and N6-methyladenosine (m^6A) targeting
45 antibodies bound to their modified ribonucleosides were determined and served as structural
46 starting points. λ -Dynamics was utilized to predict RNA modifications that permit or inhibit binding
47 to these antibodies. In vitro RNA-antibody binding assays supported the accuracy of these in silico
48 results. High agreement between experimental and computed binding propensities demonstrated
49 that λ -dynamics can serve as a predictive screen for antibody specificity against libraries of RNA
50 modifications. More importantly, this strategy is an innovative way to elucidate how hundreds of
51 known RNA modifications interact with biological molecules without the limitations imposed by in
52 vitro or in vivo methodologies.

53 **Introduction**

54 Biology has an RNA complexity problem. Cells must make sense of a vast sea of RNAs that
55 function as protein code, regulatory molecules, enzymes, scaffolds, and other biological tools.
56 Furthermore, the 4 canonical RNA bases can be enzymatically modified into new chemical
57 structures that change their ability to base pair, form secondary structure, and interact with RNA-
58 binding proteins (1). These chemical additions can be as small as a single methyl group or as
59 large as a sugar moiety. Over 140 RNA modifications have been identified across all three
60 kingdoms of life (1). RNA modifications are prevalent in biology and function as an epigenetic
61 code to regulate development (2), respond to infectious diseases (3), and are involved in cancer
62 progression (4). Their combinatorial complexity highlights how individual or collections of RNA
63 modifications may alter an RNA's fate or function. A current challenge is the development of
64 methods to identify all modification sites to decipher the roles of these RNA modifications in
65 biology.

66
67 A variety of methods can identify a few RNA modification sites. For example, chemical treatment
68 can identify m^6A (e.g. GLORI (5)) and pseudouridine (e.g. pseudo-seq (6)) by taking advantage
69 of chemistries that affect a modified base differently than an unmodified base. Direct RNA
70 nanopore sequencing can also identify specific modifications like m^6A (7-17) through differences
71 in electrical current perturbations as the modified RNA transverses the sequencing pore. Both
72 strategies, however, require tailor-made approaches to accommodate each RNA modification's
73 unique biochemical characteristics. Furthermore, without employing enrichment strategies, low
74 abundance modifications remain difficult to detect. Adaptable methods are needed to elucidate
75 the full breadth of modified RNAs found in living organisms.

76
77 A common, versatile identification strategy uses antibodies to immunoprecipitate modified RNAs
78 (18). These enriched RNAs are then sequenced to identify RNA targets and infer modification
79 sites. Immunoprecipitation and sequencing methods are well established with straightforward
80 workflows, and enrichment permits identification of less prevalent modification sites. Indeed,
81 much of the work determining the modification sites of N6-methyladenosine (m^6A , e.g. (19,20)),
82 N1-methyladenosine (m^1A , e.g. (21-24)), 5-methylcytosine (m^5C , e.g. (25,26)), and others have
83 relied on antibodies.

84
85 Antibodies can become de novo RNA-binding proteins through adaptive immunity.

87 Immunoglobulin G (IgG) antibodies are comprised of two heavy and two light polypeptide chains
88 that assemble a pair of six hypervariable complementary-determining region (CDR) loops at their
89 antigen recognition interface (27-29). Antibodies recognize a variety of antigens through CDRs
90 that vary in amino acid length and composition. How antibodies recognize proteins is well studied
91 (30), but how antibodies recognize modified RNAs is less clear. A polyinosine-antibody crystal
92 structure was determined bound to various nucleotides (31). Closer inspection of the structure
93 reveals a large, suitably configured pocket adjacent to the bound nucleotide (**Fig S1**), suggesting
94 that the antibody may have specificity toward nucleic acid, not single bases. Regardless, the lack
95 of antibody structures targeting other modified bases limits insights into how antibodies recognize
96 RNA modifications.
97

98 The success of using antibodies for RNA modification site identification depends on the quality of
99 the antibody (32,33). Antibodies with low specificity have assigned erroneous biochemical
100 functions to RNA modifications. For example, published studies reached differing conclusions
101 regarding the mechanism of the m¹A modification. Two studies found m¹A prevalent in the 5' ends
102 of mRNA (23,24), suggesting that the modification enhances translation (24), while contrasting
103 studies reported it as rare in mRNA (21,22). In the former studies, it was later discovered that the
104 antibody used for m¹A RNA enrichment also had affinity towards 7-methylguanosine (m⁷G, (21)),
105 an abundant mRNA 5' cap modification crucial for cap-dependent translation (34). These false
106 positive site identifications led to incorrect conclusions regarding m¹A function. Because the
107 identification of RNA targets and their specific modification sites gives insight into their biological
108 and biochemical mechanisms, the development of antibodies with high affinity and high specificity
109 is a key to successfully discovering the biological roles of the many RNA modifications. However,
110 given the large number of RNA modifications and the subtle chemical differences between them,
111 off-targets of RNA modification antibodies will be a continuous, inevitable problem. The current
112 state of RNA chemistry prevents *in vitro* testing of all known RNA modifications, and thus new
113 methods are required to predict the specificity of RNA modification-targeting antibodies.
114

115 Computational approaches have the potential to screen antibodies for their predicted ability to
116 bind modified RNA bases. Physics-based, alchemical free energy calculations are an accurate,
117 rigorous, and cost-effective means to quantify chemical probe interactions with protein structures
118 in silico (35-37). These calculations compute relative binding free energies ($\Delta\Delta G_{\text{bind}}$) between two
119 or more molecules by transforming between alternate chemical groups in silico. Because they are
120 at the heart of molecular dynamics simulations, these calculations also provide dynamic structural
121 characterization of macromolecular complexes. With these methods, changes in RNA-protein
122 binding affinities can be monitored as a function of the chemical differences between modified or
123 unmodified RNAs. Hence, modeling different RNA modifications can predict binding selectivity.
124

125 λ -Dynamics is an efficient alchemical free energy method that can accurately and rapidly screen
126 hundreds of modified RNAs bound to a protein host. This method holds a key advantage over
127 other *in silico* strategies in that it can model multiple chemical variations simultaneously within a
128 single simulation (38,39), making it more efficient and higher throughput. In a λ -dynamics
129 calculation, a variable λ parameter allows chemical groups to dynamically scale between "on" and
130 "off" states during a molecular dynamics simulation. Akin to selection in an *in vitro* competitive
131 binding assay, this dynamic behavior effectively differentiates the varying affinities of target
132 molecules, providing insights into their binding characteristics. Thus, λ -dynamics can rapidly
133 select for the best binders from a library of chemical modifications (40,41). To date, λ -dynamics
134 has accurately measured the relative binding free energy differences of large chemical inhibitor
135 libraries targeting the HIV reverse transcriptase (42-44) and β -secretase 1 (45,46), of mutations
136 at various protein-protein interfaces (47,48), as well as of the folding free energies of mutant T4
137 lysozyme proteins (49). Notably, chemical probe binding studies with λ -dynamics demonstrated

138 8- to 30-fold efficiency gains over other conventional free energy calculations (42,45). This
139 equates to months of computational time savings.
140

141 The following investigation tested whether λ -dynamics could accurately predict how RNA
142 modifications affected RNA-protein interactions. This work determined the structures of two
143 modified RNA-targeting antibodies bound to inosine and m⁶A, revealing that these antibodies
144 recognize their target ligands similar to other modified RNA binding proteins. The structural
145 models permitted the use of λ -dynamics to perform a computational screen of RNA base
146 modifications bound to inosine and m⁶A antibodies to predict their binding specificities. These in
147 silico binding predictions were verified with in vitro binding assays. Collectively, the results
148 demonstrate how structural biology can be combined with λ -dynamics to predict modified RNA-
149 protein interactions without the limitations imposed by biochemical experiment methodologies.
150

151 **Results**

152 The goal was to test whether λ -dynamics could be used as an in silico strategy to accurately probe
153 modified RNA-protein interactions. Antibodies can serve as modified RNA-binding proteins. They
154 are commonly used as reagents to enrich for modified RNAs and determine modification sites in
155 biology (18). Currently, RNA modification targeting antibodies are relatively few in number, have
156 modest affinity toward their targets (32,33), and can have specificity issues that confound
157 biological conclusions (21). An antibody specificity screening method for known RNA
158 modifications will enable a comprehensive view of the RNAs enriched and provide insight into
159 how to improve antibody design.
160

161 High-resolution structures of antibodies targeting single modified RNA bases have not been
162 published. An inosine-targeting antibody structure is available (31), but an open pocket adjacent
163 to the nucleoside binding site potentiates the chance of the antibody binding to a dinucleotide
164 substrate (**Fig S1**). To avoid this confounder, additional antibody structures bound to modified
165 ribonucleosides were pursued. The protein sequences of available antibodies were predicted by
166 mass spectrometry and sequencing (see Methods). Recombinant antibodies were produced in
167 cell culture and used to generate antibody fragments (Fabs). Fabs were screened in crystallizing
168 conditions, and crystals were soaked or grown with target nucleoside ligands (see Methods).
169 These efforts lead to the determination of three modified RNA-targeting antibody crystal structures
170 (**Table S1**): one targeting inosine at 1.94 Å and two targeting m⁶A at 2.02 Å and 3.06 Å.
171

172 IgG antibodies are composed of heavy and light protein chains, forming 6 variable loops on each
173 arm, or antibody binding fragment (Fab), that typically dictate binding affinity to its target substrate
174 (27-29). In the 1.94 Å inosine and 3.06 Å m⁶A antibody structures, a large, discontinuous density
175 was observed at these variable loop regions where a modified purine target nucleoside could be
176 adequately modeled (**Fig 1A,B**). Rather than binding to loops on the periphery, the modified
177 nucleosides bound to a central cavity created by the 6 variable loops between the heavy and light
178 chains (**Fig 1A,B**). Binding of small molecules at this location has been observed in other antibody
179 structures (50). In the third 2.02 Å m⁶A targeting antibody structure, density in this binding pocket
180 was not observed (**Fig S2**). Thus, two structures yielded high-resolution models of how purine
181 modified bases bind to antibodies.
182

183 Small molecule antibodies are selected through adaptive immunity to target a particular hapten
184 (51). Thus, antibodies become RNA-binding proteins through adaptation and can inform on how
185 biology designs a protein to bind an RNA modification *de novo*. Modified RNA-binding proteins
186 provide exemplary examples of potential binding architecture. For example, the YTH domains
187 bind to m⁶A with high specificity (52). This domain arranges its side chains to 1) create a specificity
188 pocket for the parent base and modification, 2) bind the nucleobase through π - π stacking, and 3)

189 line the pocket periphery with positively charged side chains to accommodate the negatively
190 charged RNA phosphate backbone (**Fig 1C**). Antibodies targeting modified RNAs might also
191 mimic this strategy. Alternatively, they might use a collection of novel binding strategies, each
192 selected randomly through adaptive immune selection.
193

194 The inosine and m⁶A antibody structures both bound to their modified ribonucleoside ligands
195 similarly to other RNA-binding proteins. To specify the modified base, the inosine targeting
196 antibody used an asparagine to select for the O6 oxygen and N1 nitrogen of the inosine
197 nucleobase (**Fig 1A**). The m⁶A-targeting antibody created a hydrophobic pocket to accommodate
198 the methyl group (**Fig 1B**) and a glutamate side chain to hydrogen bond with the adenosine
199 nucleobase N1 nitrogen (**Fig 1B**). Interestingly, glutamate side chain coordination is also
200 observed in some YTH domains that bind m⁶A (**Fig 1C**, (53)). Both antibodies used paired
201 tryptophans to create a slot for favorable π-π stacking and a tyrosine for ribose ring interactions
202 (**Fig 1A,B**). However, these tryptophans and tyrosine came from differing variable loops in each
203 antibody and are organized differently in their central antibody binding pocket (**Fig 1A,B**). The
204 difference in binding pocket organization potentially reflects how these two antibodies were
205 isolated from different animals with separate adaptive immune responses. In sum, the antibody-
206 ligand structures revealed that these two antibodies use similar strategies to bind their modified
207 base targets that may permit differentiation between unmodified base counterparts.
208

209 The quality of the structures enabled predicting in silico how these antibodies may interact with
210 other RNA nucleobases. There are over 140 different RNA modifications identified in biology,
211 many of which are not available as commercial reagents or lack protocols to synthesize in vitro.
212 A library of 44 modified and 4 unmodified nucleobases was selected based on published
213 thermodynamic parameters for RNA modifications in the CHARMM force field (54) and their
214 commercial availability for experimental testing in vitro (**Fig S3**). λ-Dynamics was used to assess
215 differences in relative binding free energies between inosine or m⁶A versus each library
216 nucleobase when bound to their respective antibodies (see Methods, **Fig 2**, and **Fig S4**). During
217 the simulations, some of the modified nucleosides unbound from the antibody (**Fig S5**),
218 presumably due to having poor binding affinity or steric clashes, and were removed from further
219 study (**Table S2** and **S3**). Similar to previously performed studies (42-44,47-49), relative binding
220 free energies ($\Delta\Delta G_{\text{bind}}$) were calculated for the nucleosides that remained antibody bound.
221 Examples of the results obtained are shown (**Fig 3** and **4**) with full results reported in the
222 Supplement (**Table S2** and **S3**). A positive $\Delta\Delta G_{\text{bind}}$ value indicates poorer binding and a negative
223 value suggests enhanced binding when compared to the native inosine or m⁶A base. As a control,
224 inosine and m⁶A modified bases were perturbed into an identical but distinct copy of themselves
225 within their respective antibody complexes. These free energy differences were near zero (**Fig**
226 **3A and 4**), as expected of a base replacing itself, and indicated that the λ-dynamics calculations
227 were working correctly.
228

229 λ-Dynamics predicted differing specificities and off-targets for these two antibodies. The inosine
230 antibody had many predicted off-targets that included uridine (**Fig 3A**) and uridine modifications
231 (**Fig 3B**). Inspection of the models revealed that hydrogen bonding of the asparagine side chain
232 to the O6 oxygen in inosine could be satisfied by the O4 oxygen in uridine (**Fig S6A**). Many uridine
233 modifications had an O4 oxygen available for hydrogen bonding, potentially explaining why
234 related molecules all had higher predicted binding affinities in the λ-dynamics calculations. In
235 contrast, cytidine and adenosine were not predicted to enhance binding (**Fig 3A** and **Table S2**).
236 Both nucleosides have nitrogens at similar positions, potentially making the pocket less favorable
237 for these bases to interact by removing hydrogen bonding. Finally, a further inspection of the
238 structures revealed a larger binding pocket in the inosine versus the m⁶A antibody binding pocket
239 (**Fig 1A,B**). This larger pocket may accommodate a greater variety of shapes and sizes,

240 increasing the propensity for off-targets. Thus, λ -dynamics predicted the inosine antibody to have
241 many off-targets in this modestly sized ribonucleoside library.
242

243 In contrast to the inosine antibody, λ -dynamics predicted that the m⁶A antibody had relatively few
244 off-targets (**Table S3**). As discussed previously, the binding pocket was smaller (**Fig 1A,B**) and
245 required a N1 nitrogen on the nucleobase for hydrogen bonding (**Fig 1B**). Along with m⁶A, a few
246 adenosine bases were predicted to bind (**Fig 4** and **Table S3**), including adenosine and N6,N6-
247 dimethyladenosine (m⁶₂A), a dimethyl modification at the N6 nitrogen position (**Fig S6B,C**). Closer
248 inspection of the structure revealed that the hydrophobic pocket had enough space to
249 accommodate a second methyl group (**Fig S6C**). Similar to the inosine antibody, cytidine was
250 predicted to be a poor binder with a high, positive free energy difference (**Fig 4**). In summary, the
251 m⁶A antibody had fewer off-targets compared to the inosine antibody but still was predicted to
252 bind to nucleosides other than m⁶A.
253

254 While λ -dynamics has demonstrated accuracy with modeling protein-protein and protein-small
255 molecule binding interactions (42-48), it has so far been untested with respect to reproducing
256 protein-RNA interactions. To evaluate our in silico predictions in vitro, Enzyme-Linked
257 Immunosorbent Assays (ELISAs) were used to probe the binding of inosine and m⁶A antibodies
258 to target and off-target RNA bases. RNAs were synthesized through solid-state chemistry (see
259 Methods) to create biotin-labeled oligomers of inosine, adenosine, uridine, and cytidine to test the
260 inosine antibody binding. Cytidine oligos with single base changes of adenosine, m⁶A, and m⁶₂A
261 were synthesized to test the m⁶A antibody binding. The biotin-labeled oligos were bound to wells
262 coated with a streptavidin derivative. Wells without oligo served as a background control. After
263 oligo incubation and washing, the inosine and m⁶A antibodies were incubated at varying
264 concentrations. Bound inosine and m⁶A antibodies were detected with a secondary horseradish
265 peroxidase (HRP) conjugated antibody that targeted mouse IgG. No inosine or m⁶A antibody wells
266 were used to control for secondary antibody background. The presence of secondary antibody
267 was detected with an HRP chromogenic substrate, with the absorbance measured as an indirect
268 reading for inosine or m⁶A antibody binding.
269

270 The inosine and m⁶A antibody in vitro binding results agreed with the λ -dynamics predictions (**Fig**
271 **5**). The inosine antibody bound to inosine and uridine oligos (**Fig 5A**), although inosine binding
272 was observed at much lower antibody concentrations. In contrast, the inosine antibody did not
273 bind to adenosine or cytosine oligos (**Fig 5A**). Likewise, the m⁶A antibody bound to m⁶A containing
274 cytidine oligos but bound poorly to cytidine only (**Fig 5B**), as expected. As λ -dynamics predicted,
275 the m⁶A antibody bound to an m⁶₂A-containing oligo (**Fig 5B**). The antibody also bound to an
276 adenosine-containing oligo (**Fig 5B**) but to a lesser degree than m⁶A. Regardless, the in vitro
277 binding results matched the predictions of λ -dynamics, supporting the accuracy of this in silico
278 method to identify modified RNA-protein interactions.
279

280 Discussion

281 With hundreds of RNA modifications identified in biology, new methods are required to determine
282 the sites of each of these chemical changes to determine their functions. Antibodies targeting
283 RNA modifications are a versatile tool to enrich and determine modification sites, but their
284 reliability hinges upon their accuracy. To this end, inosine and m⁶A antibody structures bound to
285 their modified ribonucleoside targets were determined to high resolution. These structures then
286 facilitated the use of λ -dynamics, an in silico free energy calculation, to estimate how the
287 antibodies may bind other unmodified and modified RNA bases, with worsened, neutral, or
288 enhanced binding affinities. λ -Dynamics predictions matched well with in vitro binding assay
289 results, supporting the accuracy of using this computational approach to measure untested RNA-
290 protein interactions. In its simplest application and as performed in this work, the method can be

291 used to determine off-target RNA base interactions with antibodies used for modified RNA
292 enrichment and site identification. But the strategy holds greater promise to inject insight into the
293 biochemical mechanisms of RNA modifications by determining how any modified RNA,
294 commercially available for biochemical investigation or not, may interact with proteins and other
295 molecules (**Fig 6**).
296

297 The determined antibody structures targeting modified purines revealed identical binding
298 strategies toward their respective modified RNA bases, reminiscent of modified RNA-binding
299 proteins. Each antibody had a specificity pocket and used tryptophans to create a slot for π - π
300 stacking with the nucleobase. Only one of these tryptophans had a similar sequence position
301 between the two antibodies. The other came from a separate loop, leading to RNA binding in
302 completely different orientations. These antibodies were created through adaptive immunity,
303 supporting the notion that mimicking modified base RNA-binding proteins by creating a specificity
304 pocket and using π - π stacking for nucleobase interactions is a competent way to bind a modified
305 nucleobase. Thus, convergent adaption may have led both purine-targeting antibodies to follow
306 a similar binding strategy as modified RNA-binding proteins. The results lead to the speculation
307 that all modified RNA-targeting antibodies bind to their targets similarly. Examples of pyrimidine-
308 targeting antibody structures will be necessary to further probe this concept.
309

310 Antibodies are heavily used reagents to enrich modified RNA for sequencing and site
311 identification. This strategy has been used to identify sites of many different RNA modifications to
312 deduce their biological and biochemical mechanisms. Regardless of new methodologies to
313 determine RNA modification sites, antibodies will continue to be used to enrich for less abundant
314 modifications. Thus, antibody binding to off-target RNA modifications will continue to be a problem
315 in research. The chemical similarities between many RNA modifications make antibody specificity
316 an expected complication. This work demonstrates how λ -dynamics is a viable in silico tool to
317 determine potential RNA off-targets of antibodies. The method does not require the availability of
318 modified nucleosides, RNA oligomers, or other in vitro reagents that are currently unavailable.
319 With an accurate, high-resolution structural model, λ -dynamics can test the full breadth of RNA
320 modifications in biology. Additionally, λ -dynamics has previously investigated the effects of protein
321 mutations on binding (47,48). The method can thus be used to rationally design antibodies for
322 improved binding specificity and affinity.
323

324 This is the first study to use λ -dynamics to probe nucleic acid-protein interactions via nucleic base
325 perturbations. Other in silico molecular modeling and free energy methods have been employed
326 to study nucleic acid-protein interactions, including predictions of DNA binding to proteins (55)
327 and probing mutations in DNA-protein complexes (56,57). λ -Dynamics has several key attributes
328 that make it advantageous over other in silico calculations. First, λ -dynamics enables multiple
329 modified bases to be calculated within a single simulation. This can drastically improve efficiency
330 over other free energy methods that can only investigate a single perturbation at a time, therefore
331 requiring many simulations to study multiple perturbations. Second, λ -dynamics can
332 simultaneously sample modifications at multiple sites within a chemical system. This enables
333 base changes at different RNA sequence positions to yield free energy results for multiple
334 modification combinations. There are limitations to λ -dynamics as well. Many of the calculated
335 free energy differences, such as with uridine bound to the inosine antibody (**Fig 3A**) or with m^6A
336 bound to the m^6A antibody (**Fig 4**), predicted greater enhancement of binding than what was
337 observed in vitro (**Fig 5**). The starting models for the λ -dynamics calculations were based on the
338 crystal structures of antibody fragments bound to nucleosides, but binding was tested in vitro with
339 RNA oligos. This omission of the RNA phosphate backbone from the model, as well as the
340 potential for sporadic self-associations or secondary structures in the unbound oligo, may have
341 impacted the true binding values. Additional work probing RNA-protein interactions with λ -

342 dynamics will undoubtedly improve the simulations. Moreover, the refinement of molecular
343 dynamics force fields, particularly with respect to nucleic acids, is a bustling area of research, and
344 future advancements promise to further enhance the accuracy of these classical simulations.

345
346 While hundreds of RNA modifications have been identified, only a few dozen are available for
347 experimental testing *in vitro*. Novel methods must be developed to examine how all modifications
348 affect molecular interactions to decipher their biological mechanisms. This study establishes a
349 workflow for using λ -dynamics to probe nucleic acid-protein interactions *in silico* (Fig 6). The
350 combinatorial efficiency of λ -dynamics enables rapid *in silico* examination of currently known and
351 newly discovered RNA modifications. With high-resolution structures of nucleic acid-protein
352 complexes, modified and unmodified nucleoside bases can be probed to explore how chemical
353 changes to RNA affect protein binding interactions. This computational approach can be used for
354 DNA or RNA and is not limited by available chemistry. The work presented demonstrates how
355 this strategy can probe for the specificity of antibodies. Future work can utilize this method to test
356 how hundreds of RNA modifications affect their molecular interactions with any RNA-binding
357 protein or other nucleic acids, delivering novel insights into their molecular functions.

358
359 **Materials and Methods**

360 **Recombinant antibodies.** Commercial antibodies targeting inosine and m⁶A were sequenced by
361 Abterra Biosciences (San Diego, CA) (58-60). Briefly, the antibodies were fragmented and
362 submitted for MS/MS mass spectrometry. The data was then analyzed to predict the probable
363 antibody sequence. Full-length monoclonal antibodies (mAb) and antibody fragments (Fab) were
364 produced recombinantly in human cells by Sino Biological (Wayne, PA). Fabs were made from
365 mAbs by papain protease digestion, Fc removal by protein A, and size exclusion chromatography.
366 All mAbs and Fabs were shipped and stored in phosphate buffered saline (PBS; 137 mM NaCl,
367 2.7 mM KCl, 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄).

368
369 **Crystallography.** Recombinant Fabs were concentrated to approximately 3-5 mg/ml and sitting
370 drop crystal trays were set with an Oryx4 (Douglas Instruments; Hungerford, United Kingdom).
371 The m⁶A Fab was set up without and with 1 mM m⁶A nucleoside (MedChemExpress, HY-N0086).
372 Crystals were observed by 4 weeks in the following conditions: 1) the inosine Fab in 50 mM Tris
373 pH 8.3, 15% PEG 4000, 0.1 mM EDTA; 2) the m⁶A Fab only in 20% (v/v) PEG 2K, 0.2 M MgCl₂,
374 100 mM Tris pH 8.0; and 3) m⁶A Fab with 1 mM m⁶A nucleoside in 0.17 M ammonium sulfate,
375 25.5% (w/v) PEG 4000. The inosine and m⁶A Fab only crystals were incubated in freezing
376 conditions (inosine: 21% PEG 4K, 50 mM Tris pH 8.3, 0.1 mM EDTA, 20% glycerol, 0.2 mM
377 inosine nucleoside (Sigma, I4125-1G); m⁶A: 20% (v/v) PEG 2K, 0.2 M MgCl₂, 100 mM Tris pH
378 8.0, 5-15% (v/v) glycerol, 1 mM m⁶A nucleoside) with addition of 10 mM inosine and 10 mM m⁶A
379 nucleoside for 30-60 minutes prior to freezing, respectively. X-ray diffraction data was collected
380 at Lilly Research Laboratories Collaborative Access Team (LRL-CAT; Argonne National
381 Laboratory; Argonne, IL) and ESRF ID30B (Life Sciences Collaborative Access Team (LS-CAT)
382 operating at the European Synchrotron Radiation Facility (ESRF); Grenoble, France). Data was
383 collected and processed by Lilly, UW-Madison Crystallography Core, and the authors. All data
384 was indexed, merged, and scaled in XDS/Aimless (61). Space groups were determined in
385 XDS/pointless (61). Model building and refinement were performed in Coot (62) and Phenix (63),
386 respectively. In some of the inosine and m⁶A Fab density maps, a large density was observed at
387 the Fab antigen binding site. The respective modified RNA nucleosides used in crystallization and
388 in freezing modeled well into these densities (Fig 1A,B). The final structures and merged
389 reflection files are deposited at wwPDB (wwpdb.org; PDB IDs: 8SIP, 8TCA, 8VEV). Unmerged
390 reflection data were deposited at Integrated Resource for Reproducibility in Macromolecular
391 Crystallography (proteindiffraction.org).

392

393 **System setup for molecular modeling.** Coordinates for the inosine and m⁶A Fabs were
394 obtained from our Protein Data Bank (PDB) entries 8SIP and 8VEV. Residue flips for His, Glu,
395 and Asn were assessed using the MolProbity webserver (64). Protonation states of titratable
396 residues were assigned based on their predicted pKa values at pH 7.0 using PROPKA (65,66).
397 The protein-nucleoside complexes were then solvated using the CHARMM-GUI Solution Builder
398 (67), requiring a minimum of 10 Å of solvent padding from each face. The resulting cubic water
399 box dimensions were 101 Å per edge for the inosine system and 98 Å per edge for the m⁶A
400 system. Sufficient K⁺ or Cl⁻ ions were added to neutralize the net charge of each system.
401 Additional K⁺, Mg²⁺, and Cl⁻ ions were then added to achieve a final ionic strength of 150 mM KCl
402 and 0–5 mM MgCl₂. This process was repeated to solvate the individual nucleosides without their
403 respective Fabs, yielding unbound model systems with cubic box dimensions of 30 Å per edge
404 for inosine and 32 Å per edge for m⁶A.
405

406 All simulations were performed using the CHARMM molecular simulation package ((68,69),
407 developmental version c47a2) with the Basic λ -Dynamics Engine (BLaDE) on graphics
408 processing units (GPUs) (70). Prior to running molecular dynamics, each system was subjected
409 to 250 steps of steepest descent minimization. Molecular dynamics (MD) simulations were then
410 run in the isothermal-isobaric (NPT) ensemble at 25°C and 1 atm using a Langevin thermostat
411 and Monte Carlo barostat (70-72). The g-BAOAB integrator was used with an integration timestep
412 of 2 fs and trajectory frames were saved every 1000 steps (70,73). Bond lengths between
413 hydrogens and heavy atoms were constrained using the SHAKE algorithm (74-77). Periodic
414 boundary conditions were employed in conjunction with Particle Mesh Ewald (PME) electrostatics
415 (78-80), to compute long-range electrostatic forces, and force-switched van der Waals (vdW)
416 interactions (81). Nonbonded cutoffs were set to 10 Å, with force switching taking effect starting
417 at 9 Å.
418

419 All explicit solvent calculations were conducted using the TIP3P water model (82). The
420 CHARMM36 protein force field was used to represent the inosine and m⁶A Fabs, and the
421 CHARMM36 nucleic acid force field was used to represent the RNA oligos (83-87). Modified
422 ribonucleobase parameters were used to model noncanonical bases in the ribonucleoside (54).
423 For the alchemical perturbations performed with λ -dynamics, ribonucleoside base mutations were
424 represented using a hybrid multiple-topology approach (88). In the case of purine-to-purine
425 mutations, analogous atoms in the shared core were harmonically restrained to one another using
426 the Scaling of Constrained Atoms (SCAT) interface described previously (89).
427

428 **λ -Dynamics calculations.** From 112 parameterized modified ribonucleobases available (54), a
429 library of 48 bases, comprising 44 modified and 4 unmodified base candidates, were selected for
430 *in silico* screening with λ -dynamics. Those with charged functional groups, bulky side chains, or
431 modifications to the ribose sugar were excluded. Simulations were conducted for each of the 48
432 ribonucleosides with λ -dynamics to alchemically transform wild-type nucleoside bases (inosine or
433 m⁶A) into a corresponding mutant base and compute relative differences in binding affinities. Prior
434 to initiating λ -dynamics production sampling, appropriate biasing potentials must first be identified.
435 The Adaptive Landscape Flattening (ALF) (49,90) algorithm was used to identify optimal biasing
436 potentials to facilitate dynamic and frequent alchemical transitions between the perturbed bases.
437 For each perturbation, ALF identified initial biases by first conducting one hundred simulations of
438 100 ps MD sampling, followed by 13 simulations of 1 ns each. These biases were then further
439 refined via five replicate simulations of 5 ns each. With optimal biases identified, five independent
440 production simulations of 25 ns were conducted, with an initial 5 ns of sampling removed from
441 free energy determinations for equilibration. Ribonucleosides that unbound from the Fab binding
442 site during λ -dynamics production sampling were labeled as unfavorable and were not pursued
443 further. In all other cases, final $\Delta\Delta G_{\text{bind}}$ values were calculated by Boltzmann reweighting the end-

444 state populations to the original biases with WHAM (49,91). Uncertainties (σ) were calculated by
445 bootstrapping the standard deviation of the mean across each of the five independent trials. From
446 these results, modified oligonucleotides were selected for synthesis based on commercial
447 availability.

448

449 **RNA oligonucleotide preparation.** RNA oligonucleotides used for binding affinity
450 measurements and crystallographic studies were synthesized on an ABI 394 DNA/RNA
451 synthesizer (Applied Biosystems (ABI); Waltham, MA). m⁶A (10-3005-90; Glen Research;
452 Sterline, VA), m⁶2A (ANP-8626; Chemgene; Wilmington, MA), and inosine (ANP-5680;
453 Chemgene) modified RNA phosphoramidites; Biotin phosphoramidite (CLP-1517; Chemgene);
454 and canonical RNA (A, ANP-5671; U, ANP-5674; C, ANP-6676; Chemgene) phosphoramidites
455 were purchased from commercial sources. The canonical and modified phosphoramidites were
456 concentrated to 0.1 M in acetonitrile. Coupling was carried out using a 5-benzylthio-1H-tetrazole
457 (5-BTT) solution (0.25 M) as the catalyst. The coupling time was 650 seconds. 3% trichloroacetic
458 acid in methylene chloride was used for the detritylation. Syntheses were performed on control
459 pore glass (CPG-1000) immobilized with the appropriate nucleosides. All L-oligonucleotides were
460 prepared with DMTr-on and in-house deprotected using AMA (1:1 v/v aqueous mixture of 30%
461 w/v ammonium hydroxide and 40% w/v methylamine) for 15 minutes at 65°C. The RNA strands
462 were additionally desilylated with Et₃N•3HF solution to remove TBDMS groups. The 5'-DMTr
463 deprotection was carried out using the commercial Glen-Pak purification cartridge (Glen
464 Research). Purification was initially performed by the commercial Glen-Pak purification cartridge,
465 followed by further purification with a 15% denaturing PAGE gel. The oligonucleotides were
466 collected, lyophilized, desalted, re-dissolved in water, and then concentrated as appropriate for
467 downstream experiments. Concentrations of the aqueous RNA samples were determined by their
468 UV absorption at 260 nm, using the Thermo Scientific Nanodrop One Spectrophotometer. The
469 theoretical molar extinction coefficients of these samples at 260 nm were provided by Integrated
470 DNA Technologies.

471

472 **ELISA.** Biotin-labeled, RNA oligos were diluted to 100 nM in ELISA blocking buffer (PBS, 0.05%
473 Tween-20, 0.2 mg/ml bovine serum albumin (BSA, BP9706100; Fisher Scientific; Hampton, NH)),
474 and 100 μ l were incubated in clear, 96-well NeutrAvidin™ Coated Plates (PI15217; Pierce;
475 Waltham, MA) overnight at 4°C. Two technical replicates were set for each RNA oligo. ELISA
476 blocking buffer without oligo condition was used as a negative control. The plates were washed
477 with PBS-T (PBS with 0.05% Tween-20) 3 times, and varying concentrations of recombinant mAb
478 incubated in each well for 1 hour at room temperature (approximately 20°C). A no-mAb condition
479 was used as a no primary antibody control. Plates were washed 3 times again with PBS-T and
480 incubated with goat anti-mouse IgG conjugated to horseradish peroxidase (HRP, NBP2-30347H;
481 Novus Biologicals; Centennial, CO) at 0.05 μ g/ml in ELISA blocking buffer for 1 hour at room
482 temperature (approximately 20°C). The plates were washed again with PBS-T and incubated with
483 50 μ l of room temperature 1-Step Ultra TMB-ELISA Substrate Solution (PI34028; Pierce). After
484 15 minutes, the reaction was stopped with 50 μ l of 2M Sulfuric Acid (A300S-500, Fisher Scientific).
485 The plates were analyzed by 450 nm absorbance with a Synergy H1 microplate reader (BioTek
486 Instruments; Winooski, VT). All ELISA experiments were replicated at least 3 times. The 3
487 cleanest runs were reported. Averages, standard deviations, and graphs were performed and
488 made in GraphPad Prism version 10.1.1 for MacOS (GraphPad Software, Boston, MA).

489

490 **Acknowledgements**

491 The authors thank Dr. Millie Georgiadis for help with crystal data collection and model building,
492 and members of the Aoki, Vilseck, and Zhang Labs for their helpful discussion. Data collection
493 and processing was also facilitated by Craig A. Bingman of the Department of Biochemistry

494 Collaborative Crystallography Core and the University of Wisconsin, which is supported by user
495 fees and the department. X-ray diffraction data were collected on Advanced Photon Source
496 beamline LRL-CAT 31-ID and the European Synchrotron Radiation Facility (ESRF) ID30B
497 operated by the Life Sciences Collaborative Access Team (LS-CAT). This research used
498 resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science
499 User Facility operated for the DOE Office of Science by Argonne National Laboratory under
500 Contract No. DE-AC02-06CH11357. Use of the Lilly Research Laboratories Collaborative Access
501 Team (LRL-CAT) beamline at Sector 31 of the Advanced Photon Source was provided by Eli Lilly
502 Company, which operates the facility. The authors acknowledge the Indiana University Pervasive
503 Technology Institute for providing supercomputing and storage resources that have contributed
504 to the research results reported within this paper. S.T.A, W.Z., and J.Z.V. received start-up funds
505 from the Indiana University School of Medicine and its Precision Health Initiative (PHI). J.Z.V.
506 gratefully acknowledges the National Institutes of Health (NIH) for financial support through grant
507 R35GM146888. S.T.A. is funded by the NIH/NIGMS (R35GM142691) and an Indiana University
508 Research Support Funds Grant (RSFG).
509

510 **Figure Captions**
511

512 **Fig 1.** Binding of inosine and m⁶A targeting antibodies mimics RNA-binding proteins. **(A)** Crystal
513 structure of the inosine targeting antibody fragment to 1.94 Å (PDB ID: 8SIP). Overview (left) and
514 magnified (right) rendition of the antibody bound to inosine nucleoside. 1F_oF_c density without
515 ligand in green mesh. Heavy chain (H) in dark blue, light chain (L) in light blue, and inosine in
516 orange. Interacting amino acids include heavy chain residues Asn35, Trp40, Trp50, Gly99,
517 Tyr104, and Leu106 and light chain residues Ser97 and Trp101. Those discussed in the main text
518 are labeled. **(B)** Crystal structure of the m⁶A-targeting antibody fragment to 3.06 Å (PDB ID:
519 8VEV). Labeling same as in (A), except m⁶A nucleoside in orange. Interacting amino acids include
520 heavy chain residues Trp33, Asn35, Glu50, Tyr61, Trp101, and Phe105 and light chain residues
521 Tyr34, Trp93, and Leu98. Those discussed in the main text are labeled. **(C)** Structure of a YTH
522 bound to m⁶A (YTHF1, PDB ID: 4RCJ). Residues in dark blue. m⁶A in orange. Interacting amino
523 acids include Tyr397, Asp401, Trp411, Cys412, Asn441, Trp465, Lys469, Trp470, and Asp507.
524 Those discussed in the main text are labeled.
525

526 **Fig 2.** In silico λ -dynamics workflow for screening potential binders to the inosine and m⁶A
527 antibodies. A three-step process was used to filter candidates from a library of 48 ribonucleosides
528 for in vitro antibody binding validation. (1) For each mutant library candidate, a λ -dynamics
529 simulation was conducted to calculate a relative binding free energy between the mutant and its
530 respective native ribonucleoside ligand (inosine or m⁶A). (2) All ribonucleosides that unbound
531 during these simulations were deemed unfavorable and excluded from further processing. (3)
532 Mutant bases with relative binding free energies deemed favorable ($\Delta\Delta G_{\text{bind}} \leq -0.7$ kcal/mol) were
533 selected for *in vitro* validation with binding assays based on commercial availability.
534

535 **Fig 3.** Highlighted binding trends from the inosine antibody λ -dynamics screen. **(A)** λ -Dynamics
536 predicts loss of binding (red) for cytidine (C), no change in binding (grey) for inosine and
537 adenosine (A), and enhancement of binding (green) for uridine (U). Estimated relative binding
538 free energies ($\Delta\Delta G_{\text{bind}}$) and uncertainties ($\pm\sigma$) are listed. **(B)** The predicted inosine antibody
539 promiscuity for U generalizes to many of its derivatives. Estimated relative binding free energies
540 and uncertainties are listed in green. The thickness of each equilibrium arrow is proportional to
541 the favorability of the corresponding transition. Seven other uridine derivatives (Ux7) showed
542 enhanced binding but are not depicted. See **Table S2** for a complete list.
543

544 **Fig 4.** Highlighted binding trends from the m⁶A antibody λ -dynamics screen. λ -Dynamics predicts
545 loss of binding (red) for cytidine (C), no change in binding (grey) for m⁶A and adenosine (A), and
546 enhancement of binding (green) for m⁶₂A. Estimated relative binding free energies ($\Delta\Delta G_{\text{bind}}$) and
547 uncertainties ($\pm\sigma$) are listed. See **Table S3** for a complete list.
548

549 **Fig 5.** ELISA binding assay results confirmed λ -dynamics predictions of antibody off-targets. **(A)**
550 Absorbance units reported by ELISA indicating the binding affinity of inosine antibody to inosine
551 (I), uridine (U), adenosine (A), and cytidine (C) over varying protein concentrations. Double
552 asterisks (**) denote a p-value < 0.01. Inosine serves as a positive control. In line with λ -dynamics
553 predictions, U identified as an off-target while A and C demonstrated negligible binding. **(B)**
554 Absorbance units reported by ELISA indicating the binding affinity of m⁶A antibody to m⁶A, m⁶₂A,
555 adenosine (A), and cytidine (C) at varying protein concentrations. Double asterisks (**) denote a
556 p-value < 0.01. m⁶A serves as a positive control. Again, matching λ -dynamics predictions, m⁶₂A
557 and A are identified as off-targets while C demonstrated negligible binding. All p-values calculated
558 are available in **Fig S6D,E**.
559

560 **Fig 6.** Proposed strategy to predict how proteins bind canonical and modified RNA. (1) Starting
561 with an RNA-protein structural model, (2) an in silico λ -dynamics screen can be conducted to
562 assess the favorability of the protein's interactions with a complete range of RNA bases. (3) This
563 approach provides an economical and effective means to explore the full extent of a protein's
564 RNA-binding capabilities that can be tested further in vitro.

565

566 **Supplemental Figure Captions**

567 **Table S1.** Data collection and refinement statistics for the inosine and m^6A antibody crystal
568 structures.

569

570 **Table S2.** Complete table of λ -dynamics results for inosine antibody screening with the RNA
571 library. RNA chemical structures available in **Fig S3**. Relative binding free energy, $\Delta\Delta G_{\text{bind}}$.
572 Standard deviation, $\pm\sigma$. Unbound, u.b. Not specified due to bad sampling, n.s. Entries
573 corresponding to favorable modifications ($\Delta\Delta G_{\text{bind}} \leq -0.7$ kcal/mol) are emphasized in bold italics.
574 Patch name from Xu et al., 2016.

575

576 **Table S3.** Complete table of λ -dynamics results for m^6A antibody screening with the RNA library.
577 RNA chemical structures available in **Fig S3**. Relative binding free energy, $\Delta\Delta G_{\text{bind}}$. Standard
578 deviation, $\pm\sigma$. Unbound, u.b. Not specified due to bad sampling, n.s. Entries corresponding to
579 favorable modifications ($\Delta\Delta G_{\text{bind}} \leq -0.7$ kcal/mol) are emphasized in bold italics. Patch name from
580 Xu et al., 2016.

581

582 **Fig S1.** A previously published poly-inosine antibody has a large binding pocket that may
583 accommodate multiple nucleobases. Overview (left) and magnified image (right) of the poly-
584 inosine antibody fragment (PDB ID: 1MRD) binding pocket. An inosine mononucleotide (orange)
585 was modeled into the missing ligand density (green). Heavy chain residues (H) in dark blue and
586 light chain residues (L) in light blue. Water molecules substituting for the potential second
587 mononucleotide are depicted as red spheres, indicating the potential space to bind a second
588 nucleobase. Interacting amino acids include heavy chain residue Arg96 and light chain residues
589 Asn28, Asn30, Tyr32, Lys50, and Ser91. The extended binding pocket (red arrow) includes light
590 chain residue Arg96 and heavy chain residues Gln35, Trp47, Glu50, and Asn58.

591

592 **Fig S2.** Crystal structure of the m^6A Fab apo- form to 2.05 Å (PDB ID: 8TCA). Critical binding
593 pocket amino acids discussed in the main text are labeled. Heavy chain residues (H) are
594 represented in dark blue, light chain residues (L) in light blue, and waters as red spheres. Depicted
595 binding pocket amino acids match those of the m^6A Fab holo- form (**Fig 1A**).

596

597 **Fig S3.** Chemical library of ribonucleoside bases. The library includes the 4 canonical
598 ribonucleobases (A, C, G, and U) and 44 naturally occurring modified derivatives (12 As, 6 Cs, 8
599 Gs, and 18 Us). Differences between each modification and its respective canonical base are
600 highlighted in green.

601

602 **Fig S4.** Molecular dynamics simulation movie example of the m^6A antibody with a bound
603 nucleoside target. The m^6A Fab binds tightly to m^6_2A . Movie made in Pymol (Schrödinger, Inc.).

604

605 **Fig S5.** Molecular dynamics simulation movie example of the m^6A antibody with an unbinding
606 nucleoside target. The m^6A Fab unbinds from uridine. Movie made in Pymol (Schrödinger, Inc.).

607

608 **Fig S6.** Structural models of inosine and m^6A antibodies bound to representative off-target RNAs.
609 (A) Magnified binding site of the inosine antibody fragment in complex with uridine. (B-C)
610 Magnified binding site of the m^6A antibody fragment in complex with (B) m^6_2A or (C) adenosine

611 (A). Heavy chain residues (H) are represented in dark blue, light chain residues (L) in light blue,
612 and the off-target nucleoside in orange. Critical amino acid contacts labeled. (D-E) Table of t-test
613 p-value statistics for (D) inosine and (E) m⁶A antibody ELISA binding assay results reported in
614 **Fig 5**. p-values < 0.01 in bold.

615 **References**

- 616 1. McCown, P.J., Ruszkowska, A., Kunkler, C.N., Breger, K., Hulewicz, J.P., Wang, M.C.,
617 Springer, N.A. and Brown, J.A. (2020) Naturally occurring modified ribonucleosides. *Wiley*
618 *Interdiscip Rev RNA*, **11**, e1595.
- 619 2. Roundtree, I.A., Evans, M.E., Pan, T. and He, C. (2017) Dynamic RNA Modifications in
620 Gene Expression Regulation. *Cell*, **169**, 1187-1200.
- 621 3. Kennedy, E.M., Courtney, D.G., Tsai, K. and Cullen, B.R. (2017) Viral Epitranscriptomics.
622 *J Virol*, **91**.
- 623 4. Wu, X., Sang, L. and Gong, Y. (2018) N6-methyladenine RNA modification and cancers.
624 *Am J Cancer Res*, **8**, 1957-1966.
- 625 5. Liu, C., Sun, H., Yi, Y., Shen, W., Li, K., Xiao, Y., Li, F., Li, Y., Hou, Y., Lu, B. *et al.* (2023)
626 Absolute quantification of single-base m(6)A methylation in the mammalian transcriptome
627 using GLORI. *Nat Biotechnol*, **41**, 355-366.
- 628 6. Carlile, T.M., Rojas-Duran, M.F., Zinshteyn, B., Shin, H., Bartoli, K.M. and Gilbert, W.V.
629 (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and
630 human cells. *Nature*, **515**, 143-146.
- 631 7. Stoiber, M., Quick, J., Egan, R., Lee, J.E., Celtniker, S., Neely, R.K., Loman, N.,
632 Pennacchio, L.A. and Brown, J. (2017) *De novo* Identification of DNA
633 Modifications Enabled by Genome-Guided Nanopore Signal Processing. *bioRxiv*, 094672.
- 634 8. Lorenz, D.A., Sathe, S., Einstein, J.M. and Yeo, G.W. (2020) Direct RNA sequencing
635 enables m(6)A detection in endogenous transcript isoforms at base-specific resolution.
636 *RNA*, **26**, 19-28.
- 637 9. Gao, Y., Liu, X., Wu, B., Wang, H., Xi, F., Kohnen, M.V., Reddy, A.S.N. and Gu, L. (2021)
638 Quantitative profiling of N(6)-methyladenosine at single-base resolution in stem-
639 differentiating xylem of *Populus trichocarpa* using Nanopore direct RNA sequencing.
640 *Genome Biol*, **22**, 22.
- 641 10. Hendra, C., Pratanwanich, P.N., Wan, Y.K., Goh, W.S.S., Thiery, A. and Goke, J. (2022)
642 Detection of m6A from direct RNA sequencing using a multiple instance learning
643 framework. *Nat Methods*, **19**, 1590-1598.
- 644 11. Leger, A., Amaral, P.P., Pandolfini, L., Capitanchik, C., Capraro, F., Miano, V., Migliori, V.,
645 Toolan-Kerr, P., Sideri, T., Enright, A.J. *et al.* (2021) RNA modifications detection by
646 comparative Nanopore direct RNA sequencing. *Nat Commun*, **12**, 7198.
- 647 12. Pratanwanich, P.N., Yao, F., Chen, Y., Koh, C.W.Q., Wan, Y.K., Hendra, C., Poon, P.,
648 Goh, Y.T., Yap, P.M.L., Chooi, J.Y. *et al.* (2021) Identification of differential RNA
649 modifications from nanopore direct RNA sequencing with xPore. *Nat Biotechnol*, **39**, 1394-
650 1402.
- 651 13. Liu, H., Begik, O., Lucas, M.C., Ramirez, J.M., Mason, C.E., Wiener, D., Schwartz, S.,
652 Mattick, J.S., Smith, M.A. and Novoa, E.M. (2019) Accurate detection of m(6)A RNA
653 modifications in native RNA sequences. *Nat Commun*, **10**, 4079.
- 654 14. Parker, M.T., Knop, K., Sherwood, A.V., Schurch, N.J., Mackinnon, K., Gould, P.D., Hall,
655 A.J., Barton, G.J. and Simpson, G.G. (2020) Nanopore direct RNA sequencing maps the
656 complexity of *Arabidopsis* mRNA processing and m(6)A modification. *Elife*, **9**.
- 657 15. Price, A.M., Hayer, K.E., McIntyre, A.B.R., Gokhale, N.S., Abebe, J.S., Della Fera, A.N.,
658 Mason, C.E., Horner, S.M., Wilson, A.C., Depledge, D.P. and Weitzman, M.D. (2020)
659 Direct RNA sequencing reveals m(6)A modifications on adenovirus RNA are necessary
660 for efficient splicing. *Nat Commun*, **11**, 6016.
- 661 16. Jenjaroenpun, P., Wongsurawat, T., Wadley, T.D., Wassenaar, T.M., Liu, J., Dai, Q.,
662 Wanchai, V., Akel, N.S., Jamshidi-Parsian, A., Franco, A.T. *et al.* (2021) Decoding the
663 epitranscriptional landscape from native RNA sequences. *Nucleic Acids Res*, **49**, e7.

664 17. Zhong, Z.D., Xie, Y.Y., Chen, H.X., Lan, Y.L., Liu, X.H., Ji, J.Y., Wu, F., Jin, L., Chen, J.,
665 Mak, D.W. *et al.* (2023) Systematic comparison of tools used for m(6)A mapping from
666 nanopore direct RNA sequencing. *Nat Commun*, **14**, 1906.

667 18. Sarkar, A., Gasperi, W., Begley, U., Nevins, S., Huber, S.M., Dedon, P.C. and Begley,
668 T.J. (2021) Detecting the epitranscriptome. *Wiley Interdiscip Rev RNA*, **12**, e1663.

669 19. Horowitz, S., Horowitz, A., Nilsen, T.W., Munns, T.W. and Rottman, F.M. (1984) Mapping
670 of N6-methyladenosine residues in bovine prolactin mRNA. *Proc Natl Acad Sci U S A*, **81**,
671 5667-5671.

672 20. Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L.,
673 Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M. *et al.* (2012)
674 Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. *Nature*,
675 **485**, 201-206.

676 21. Grozhik, A.V., Olarerin-George, A.O., Sindelar, M., Li, X., Gross, S.S. and Jaffrey, S.R.
677 (2019) Antibody cross-reactivity accounts for widespread appearance of m(1)A in 5'UTRs.
678 *Nat Commun*, **10**, 5126.

679 22. Safra, M., Sas-Chen, A., Nir, R., Winkler, R., Nachshon, A., Bar-Yaacov, D., Erlacher, M.,
680 Rossmanith, W., Stern-Ginossar, N. and Schwartz, S. (2017) The m1A landscape on
681 cytosolic and mitochondrial mRNA at single-base resolution. *Nature*, **551**, 251-255.

682 23. Li, X., Xiong, X., Wang, K., Wang, L., Shu, X., Ma, S. and Yi, C. (2016) Transcriptome-
683 wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. *Nat
684 Chem Biol*, **12**, 311-316.

685 24. Dominissini, D., Nachtergael, S., Moshitch-Moshkovitz, S., Peer, E., Kol, N., Ben-Haim,
686 M.S., Dai, Q., Di Segni, A., Salmon-Divon, M., Clark, W.C. *et al.* (2016) The dynamic N(1)-
687 methyladenosine methylome in eukaryotic messenger RNA. *Nature*, **530**, 441-446.

688 25. Delatte, B., Wang, F., Ngoc, L.V., Collignon, E., Bonvin, E., Deplus, R., Calonne, E.,
689 Hassabi, B., Putmans, P., Awe, S. *et al.* (2016) RNA biochemistry. Transcriptome-wide
690 distribution and function of RNA hydroxymethylcytosine. *Science*, **351**, 282-285.

691 26. Amort, T., Rieder, D., Wille, A., Khokhlova-Cubberley, D., Riml, C., Trixl, L., Jia, X.Y.,
692 Micura, R. and Lusser, A. (2017) Distinct 5-methylcytosine profiles in poly(A) RNA from
693 mouse embryonic stem cells and brain. *Genome Biol*, **18**, 1.

694 27. Stanfield, R.L. and Wilson, I.A. (2014) Antibody Structure. *Microbiol Spectr*, **2**.

695 28. Lipman, N.S., Jackson, L.R., Trudel, L.J. and Weis-Garcia, F. (2005) Monoclonal versus
696 polyclonal antibodies: distinguishing characteristics, applications, and information
697 resources. *ILAR J*, **46**, 258-268.

698 29. Lee, C.C., Perchiacca, J.M. and Tessier, P.M. (2013) Toward aggregation-resistant
699 antibodies by design. *Trends Biotechnol*, **31**, 612-620.

700 30. Wilson, I.A. and Stanfield, R.L. (2021) 50 Years of structural immunology. *J Biol Chem*,
701 **296**, 100745.

702 31. Pokkuluri, P.R., Bouthillier, F., Li, Y., Kuderova, A., Lee, J. and Cygler, M. (1994)
703 Preparation, characterization and crystallization of an antibody Fab fragment that
704 recognizes RNA. Crystal structures of native Fab and three Fab-mononucleotide
705 complexes. *J Mol Biol*, **243**, 283-297.

706 32. Weichmann, F., Hett, R., Schepers, A., Ito-Kureha, T., Flatley, A., Slama, K., Hastert, F.D.,
707 Angstman, N.B., Cardoso, M.C., Konig, J. *et al.* (2020) Validation strategies for antibodies
708 targeting modified ribonucleotides. *RNA*, **26**, 1489-1506.

709 33. Helm, M. and Motorin, Y. (2017) Detecting RNA modifications in the epitranscriptome:
710 predict and validate. *Nat Rev Genet*, **18**, 275-291.

711 34. Sonenberg, N. (2008) eIF4E, the mRNA cap-binding protein: from basic discovery to
712 translational research. *Biochem Cell Biol*, **86**, 178-183.

713 35. Song, L.F. and Merz, K.M., Jr. (2020) Evolution of Alchemical Free Energy Methods in
714 Drug Discovery. *J Chem Inf Model*, **60**, 5308-5318.

715 36. Chodera, J.D., Mobley, D.L., Shirts, M.R., Dixon, R.W., Branson, K. and Pande, V.S.
716 (2011) Alchemical free energy methods for drug discovery: progress and challenges. *Curr*
717 *Opin Struct Biol*, **21**, 150-160.

718 37. Kollman, P. (2002) Free energy calculations: Applications to chemical and biochemical
719 phenomena. *Chemical Reviews*, **93**, 2395-2417.

720 38. Knight, J.L. and Brooks, C.L. (2011) Multisite λ Dynamics for Simulated Structure–Activity
721 Relationship Studies. *Journal of Chemical Theory and Computation*, **7**, 2728-2739.

722 39. Knight, J.L. and Brooks, C.L. (2011) Applying efficient implicit nongeometric constraints in
723 alchemical free energy simulations. *Journal of Computational Chemistry*, **32**, 3423-3432.

724 40. Kong, X. and Brooks, C.L. (1996) λ -dynamics: A new approach to free energy calculations.
725 *The Journal of Chemical Physics*, **105**, 2414-2423.

726 41. Knight, J.L. and Brooks, C.L. (2009) λ -Dynamics free energy simulation methods. *Journal*
727 *of Computational Chemistry*, **30**, 1692-1700.

728 42. Vilseck, J.Z., Armacost, K.A., Hayes, R.L., Goh, G.B. and Brooks, C.L. (2018) Predicting
729 Binding Free Energies in a Large Combinatorial Chemical Space Using Multisite λ
730 Dynamics. *The Journal of Physical Chemistry Letters*, **9**, 3328-3332.

731 43. Lee, W.-G., Gallardo-Macias, R., Frey, K.M., Spasov, K.A., Bollini, M., Anderson, K.S. and
732 Jorgensen, W.L. (2013) Picomolar Inhibitors of HIV Reverse Transcriptase Featuring
733 Bicyclic Replacement of a Cyanovinylphenyl Group. *Journal of the American Chemical*
734 *Society*, **135**, 16705-16713.

735 44. Lee, W.-G., Frey, K.M., Gallardo-Macias, R., Spasov, K.A., Bollini, M., Anderson, K.S. and
736 Jorgensen, W.L. (2014) Picomolar Inhibitors of HIV-1 Reverse Transcriptase: Design and
737 Crystallography of Naphthyl Phenyl Ethers. *ACS Medicinal Chemistry Letters*, **5**, 1259-
738 1262.

739 45. Vilseck, J.Z., Sohail, N., Hayes, R.L. and Brooks, C.L. (2019) Overcoming Challenging
740 Substituent Perturbations with Multisite λ -Dynamics: A Case Study Targeting β -Secretase
741 1. *The Journal of Physical Chemistry Letters*, **10**, 4875-4880.

742 46. Keränen, H., Pérez-Benito, L., Ciordia, M., Delgado, F., Steinbrecher, T.B., Oehlrich, D.,
743 van Vlijmen, H.W.T., Trabanco, A.A. and Tresadern, G. (2017) Acylguanidine Beta
744 Secretase 1 Inhibitors: A Combined Experimental and Free Energy Perturbation Study.
745 *Journal of Chemical Theory and Computation*, **13**, 1439-1453.

746 47. Hanquier, J.N., Sanders, K., Berryhill, C.A., Sahoo, F.K., Hudmon, A., Vilseck, J.Z. and
747 Cornett, E.M. (2023) Identification of nonhistone substrates of the lysine methyltransferase
748 PRDM9. *J Biol Chem*, **299**, 104651.

749 48. Peck Justice, S.A., Barron, M.P., Qi, G.D., Wijeratne, H.R.S., Victorino, J.F., Simpson,
750 E.R., Vilseck, J.Z., Wijeratne, A.B. and Mosley, A.L. (2020) Mutant thermal proteome
751 profiling for characterization of missense protein variants and their associated phenotypes
752 within the proteome. *J Biol Chem*, **295**, 16219-16238.

753 49. Hayes, R.L., Vilseck, J.Z. and Brooks, C.L., 3rd. (2018) Approaching protein design with
754 multisite lambda dynamics: Accurate and scalable mutational folding free energies in T4
755 lysozyme. *Protein Sci*, **27**, 1910-1922.

756 50. Fanning, S.W. and Horn, J.R. (2011) An anti-hapten camelid antibody reveals a cryptic
757 binding site with significant energetic contributions from a nonhypervariable loop. *Protein*
758 *Sci*, **20**, 1196-1207.

759 51. Yau, K.Y., Lee, H. and Hall, J.C. (2003) Emerging trends in the synthesis and improvement
760 of hapten-specific recombinant antibodies. *Biotechnol Adv*, **21**, 599-637.

761 52. Patil, D.P., Pickering, B.F. and Jaffrey, S.R. (2018) Reading m(6)A in the Transcriptome:
762 m(6)A-Binding Proteins. *Trends Cell Biol*, **28**, 113-127.

763 53. Xu, C., Liu, K., Ahmed, H., Loppnau, P., Schapira, M. and Min, J. (2015) Structural Basis
764 for the Discriminative Recognition of N6-Methyladenosine RNA by the Human YT521-B
765 Homology Domain Family of Proteins. *J Biol Chem*, **290**, 24902-24913.

766 54. Xu, Y., Vanommeslaeghe, K., Aleksandrov, A., MacKerell, A.D., Jr. and Nilsson, L. (2016)
767 Additive CHARMM force field for naturally occurring modified ribonucleotides. *J Comput*
768 *Chem*, **37**, 896-912.

769 55. Seeliger, D., Buelens, F.P., Goette, M., de Groot, B.L. and Grubmuller, H. (2011) Towards
770 computational specificity screening of DNA-binding proteins. *Nucleic Acids Res*, **39**, 8281-
771 8290.

772 56. Beierlein, F.R., Kneale, G.G. and Clark, T. (2011) Predicting the effects of basepair
773 mutations in DNA-protein complexes by thermodynamic integration. *Biophys J*, **101**, 1130-
774 1138.

775 57. Gapsys, V. and de Groot, B.L. (2017) Alchemical Free Energy Calculations for Nucleotide
776 Mutations in Protein-DNA Complexes. *J Chem Theory Comput*, **13**, 6275-6289.

777 58. Bandeira, N., Pham, V., Pevzner, P., Arnott, D. and Lill, J.R. (2008) Automated de novo
778 protein sequencing of monoclonal antibodies. *Nat Biotechnol*, **26**, 1336-1338.

779 59. Castellana, N.E., Pham, V., Arnott, D., Lill, J.R. and Bafna, V. (2010) Template
780 proteogenomics: sequencing whole proteins using an imperfect database. *Mol Cell*
781 *Proteomics*, **9**, 1260-1270.

782 60. Castellana, N.E., McCutcheon, K., Pham, V.C., Harden, K., Nguyen, A., Young, J.,
783 Adams, C., Schroeder, K., Arnott, D., Bafna, V. *et al.* (2011) Resurrection of a clinical
784 antibody: template proteogenomic de novo proteomic sequencing and reverse
785 engineering of an anti-lymphotoxin-alpha antibody. *Proteomics*, **11**, 395-405.

786 61. Kabsch, W. (2010) Xds. *Acta Crystallogr D Biol Crystallogr*, **66**, 125-132.

787 62. Emsley, P., Lohkamp, B., Scott, W.G. and Cowtan, K. (2010) Features and development
788 of Coot. *Acta Crystallogr D Biol Crystallogr*, **66**, 486-501.

789 63. Liebschner, D., Afonine, P.V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I., Hintze,
790 B., Hung, L.W., Jain, S., McCoy, A.J. *et al.* (2019) Macromolecular structure determination
791 using X-rays, neutrons and electrons: recent developments in Phenix. *Acta Crystallogr D*
792 *Struct Biol*, **75**, 861-877.

793 64. Williams, C.J., Headd, J.J., Moriarty, N.W., Prisant, M.G., Videau, L.L., Deis, L.N., Verma,
794 V., Keedy, D.A., Hintze, B.J., Chen, V.B. *et al.* (2018) MolProbity: More and better
795 reference data for improved all-atom structure validation. *Protein Sci*, **27**, 293-315.

796 65. Olsson, M.H.M., Søndergaard, C.R., Rostkowski, M. and Jensen, J.H. (2011) PROPKA3:
797 Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.
798 *Journal of Chemical Theory and Computation*, **7**, 525-537.

799 66. Søndergaard, C.R., Olsson, M.H., Rostkowski, M. and Jensen, J.H. (2011) Improved
800 Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of
801 pKa Values. *J Chem Theory Comput*, **7**, 2284-2295.

802 67. Jo, S., Kim, T., Iyer, V.G. and Im, W. (2008) CHARMM-GUI: a web-based graphical user
803 interface for CHARMM. *J Comput Chem*, **29**, 1859-1865.

804 68. Brooks, B.R., Brooks, C.L., 3rd, Mackerell, A.D., Jr., Nilsson, L., Petrella, R.J., Roux, B.,
805 Won, Y., Archontis, G., Bartels, C., Boresch, S. *et al.* (2009) CHARMM: the biomolecular
806 simulation program. *J Comput Chem*, **30**, 1545-1614.

807 69. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus,
808 M. (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics
809 calculations. *Journal of Computational Chemistry*, **4**, 187-217.

810 70. Hayes, R.L., Buckner, J. and Brooks, C.L., 3rd. (2021) BLaDE: A Basic Lambda Dynamics
811 Engine for GPU-Accelerated Molecular Dynamics Free Energy Calculations. *J Chem*
812 *Theory Comput*, **17**, 6799-6807.

813 71. Åqvist, J., Wennerström, P., Nervall, M., Bjelic, S. and Brandsdal, B.O. (2004) Molecular
814 dynamics simulations of water and biomolecules with a Monte Carlo constant pressure
815 algorithm. *Chemical physics letters*, **384**, 288-294.

816 72. Chow, K.-H. and Ferguson, D.M. (1995) Isothermal-isobaric molecular dynamics
817 simulations with Monte Carlo volume sampling. *Computer physics communications*, **91**,
818 283-289.

819 73. Leimkuhler, B. and Matthews, C. (2016) Efficient molecular dynamics using geodesic
820 integration and solvent-solute splitting. *Proc Math Phys Eng Sci*, **472**, 20160138.

821 74. Ryckaert, J.-P., Ciccotti, G. and Berendsen, H.J. (1977) Numerical integration of the
822 cartesian equations of motion of a system with constraints: molecular dynamics of n-
823 alkanes. *Journal of computational physics*, **23**, 327-341.

824 75. van Gunsteren, W.F. and Berendsen, H.J. (1977) Algorithms for macromolecular
825 dynamics and constraint dynamics. *Molecular Physics*, **34**, 1311-1327.

826 76. Andersen, H.C. (1983) Rattle: A “velocity” version of the shake algorithm for molecular
827 dynamics calculations. *Journal of computational Physics*, **52**, 24-34.

828 77. Kräutler, V., Van Gunsteren, W.F. and Hünenberger, P.H. (2001) A fast SHAKE algorithm
829 to solve distance constraint equations for small molecules in molecular dynamics
830 simulations. *Journal of computational chemistry*, **22**, 501-508.

831 78. Darden, T., York, D. and Pedersen, L. (1993) Particle mesh Ewald: An N· log (N) method
832 for Ewald sums in large systems. *The Journal of chemical physics*, **98**, 10089-10092.

833 79. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H. and Pedersen, L.G. (1995)
834 A smooth particle mesh Ewald method. *The Journal of chemical physics*, **103**, 8577-8593.

835 80. Huang, Y., Chen, W., Wallace, J.A. and Shen, J. (2016) All-Atom Continuous Constant
836 pH Molecular Dynamics With Particle Mesh Ewald and Titratable Water. *J Chem Theory
837 Comput*, **12**, 5411-5421.

838 81. Steinbach, P.J. and Brooks, B.R. (1994) New spherical-cutoff methods for long-range
839 forces in macromolecular simulation. *Journal of Computational Chemistry*, **15**, 667-683.

840 82. Jorgensen, W., Chandrasekhar, J., Madura, J., Impey, R. and Klein, M. (1983)
841 Comparison of Simple Potential Functions for Simulating Liquid Water. *J. Chem. Phys.*,
842 **79**, 926-935.

843 83. Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B.L., Grubmüller, H.
844 and MacKerell, A.D. (2017) CHARMM36m: an improved force field for folded and
845 intrinsically disordered proteins. *Nature Methods*, **14**, 71-73.

846 84. Mackerell Jr, A.D., Feig, M. and Brooks Iii, C.L. (2004) Extending the treatment of
847 backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics
848 in reproducing protein conformational distributions in molecular dynamics simulations.
849 *Journal of Computational Chemistry*, **25**, 1400-1415.

850 85. Best, R.B., Zhu, X., Shim, J., Lopes, P.E.M., Mittal, J., Feig, M. and MacKerell, A.D., Jr.
851 (2012) Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting
852 Improved Sampling of the Backbone ϕ , ψ and Side-Chain χ_1 and χ_2 Dihedral Angles.
853 *Journal of Chemical Theory and Computation*, **8**, 3257-3273.

854 86. Denning, E.J., Priyakumar, U.D., Nilsson, L. and Mackerell, A.D., Jr. (2011) Impact of 2'-
855 hydroxyl sampling on the conformational properties of RNA: update of the CHARMM all-
856 atom additive force field for RNA. *J Comput Chem*, **32**, 1929-1943.

857 87. Foloppe, N. and MacKerell, J.A.D. (2000) All-atom empirical force field for nucleic acids:
858 I. Parameter optimization based on small molecule and condensed phase macromolecular
859 target data. *Journal of Computational Chemistry*, **21**, 86-104.

860 88. Vilseck, J.Z., Cervantes, L.F., Hayes, R.L. and Brooks, C.L., III. (2022) Optimizing Multisite
861 λ -Dynamics Throughput with Charge Renormalization. *Journal of Chemical Information
862 and Modeling*, **62**, 1479-1488.

863 89. Hayes, R.L. and Brooks, C.L., 3rd. (2021) A strategy for proline and glycine mutations to
864 proteins with alchemical free energy calculations. *J Comput Chem*, **42**, 1088-1094.

865 90. Hayes, R.L., Armacost, K.A., Vilseck, J.Z. and Brooks, C.L., 3rd. (2017) Adaptive
866 Landscape Flattening Accelerates Sampling of Alchemical Space in Multisite lambda
867 Dynamics. *J Phys Chem B*, **121**, 3626-3635.

868 91. Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H. and Kollman, P.A. (1992) THE
869 weighted histogram analysis method for free-energy calculations on biomolecules. I. The
870 method. *Journal of Computational Chemistry*, **13**, 1011-1021.

871

Figure 1

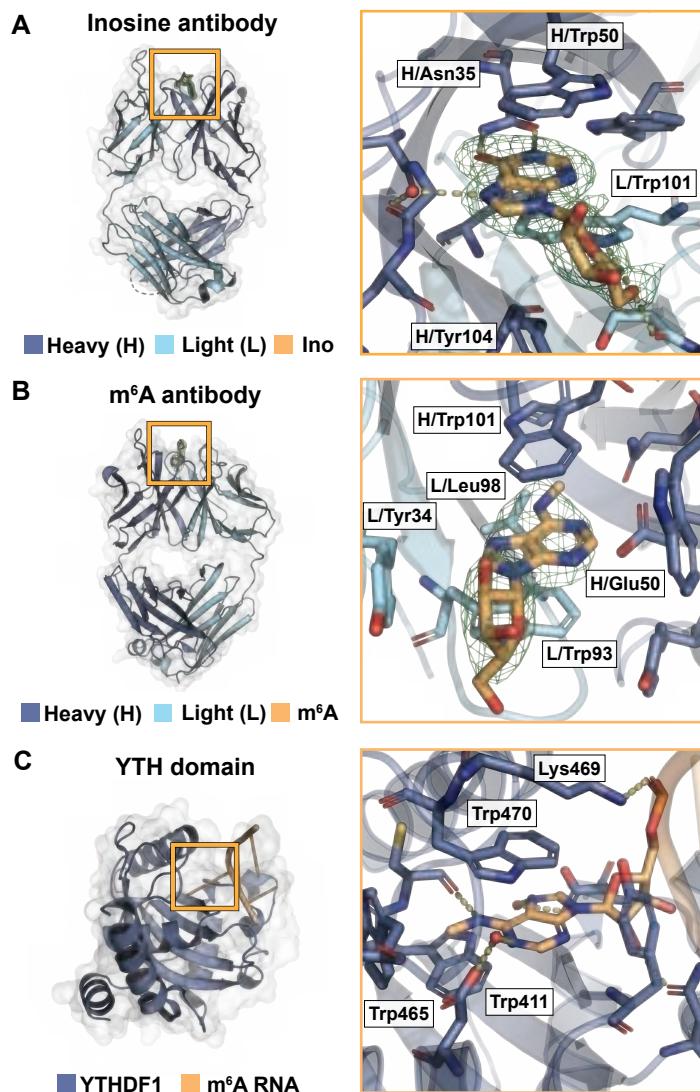


Figure 2

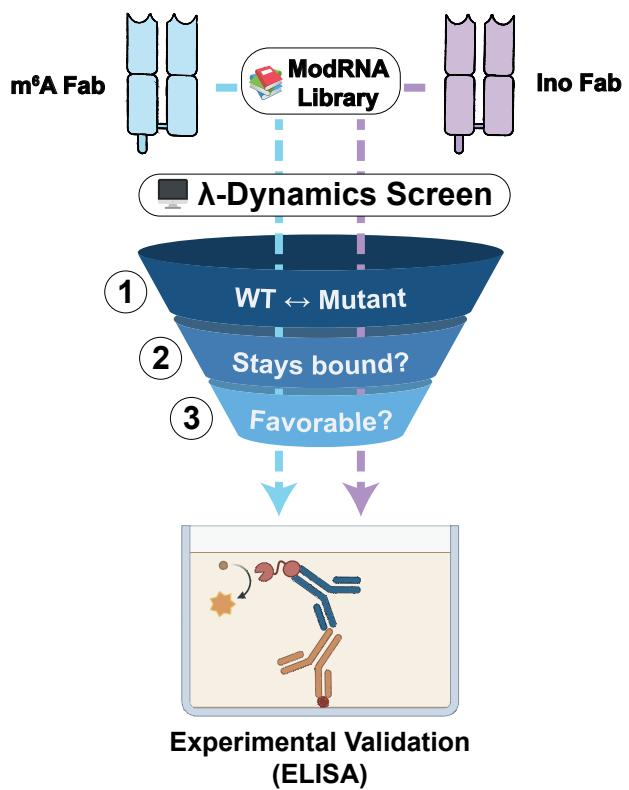


Figure 3

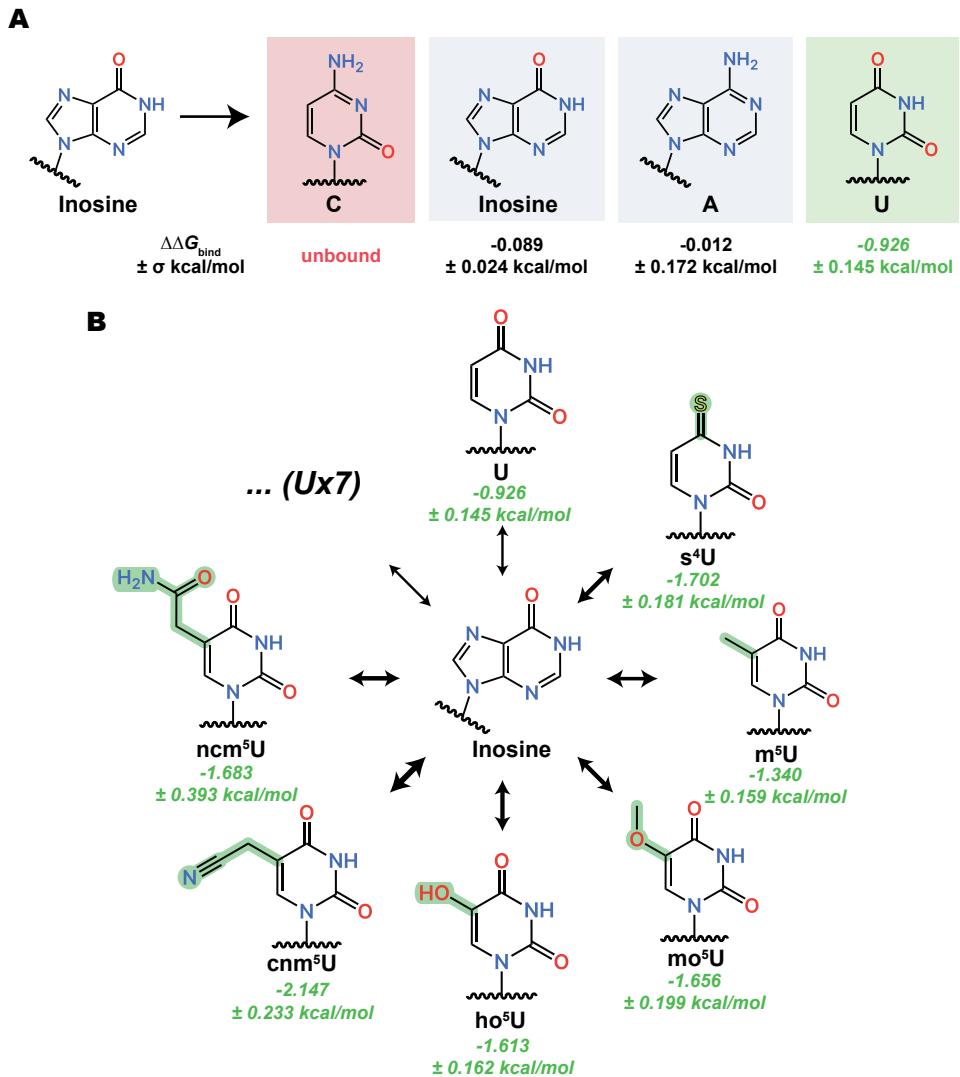


Figure 4

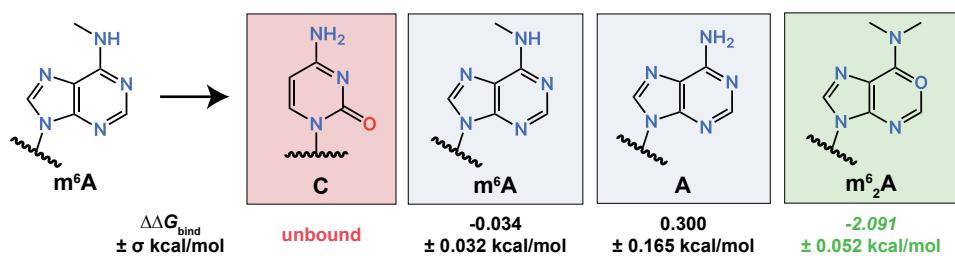


Figure 5

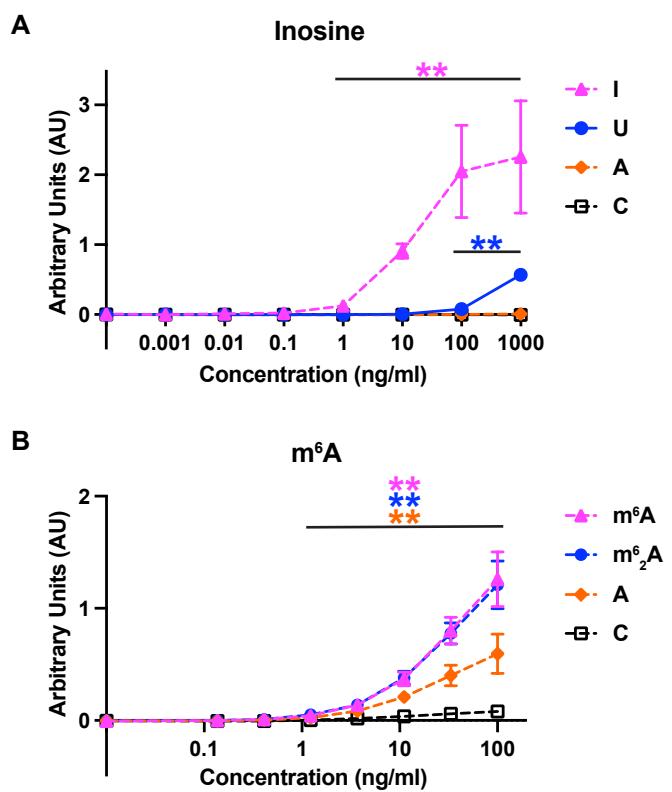


Figure 6

Table S1. Data collection and refinement statistics.

	Inosine Fab w/ Inosine (PDB ID: 8SIP)	m6A Fab only (PDB ID: 8TCA)	m6A Fab w/ ligand (PDB ID: 8VEV)
Wavelength	0.9793	0.9793	0.8731
Resolution range	57.04 - 1.94 (2.009 - 1.94)	70 - 2.02 (2.092 - 2.02)	48.23 - 3.06 (3.18 - 3.06)
Space group	P 1	P 43 21 2	P 21 21 21
Unit cell	39.8174 49.0903 57.3853 83.8419 88.8169 89.6813	79.906 79.906 145.127 90 90 90	83.64 128.377 150.476 90 90 90
Total reflections	218254 (14586)	230543 (22581)	203373 (23011)
Unique reflections	30888 (2931)	31198 (2999)	31244 (3399)
Multiplicity	7.1 (4.9)	7.4 (7.3)	6.5 (6.8)
Completeness (%)	96.20 (91.25)	98.24 (96.71)	99.90 (100.00)
Mean I/sigma(I)	6.33 (3.17)	9.71 (1.08)	16.80 (4.00)
Wilson B-factor	26.61	27.17	78.19
R-merge	0.1901 (1.506)	0.2183 (2.290)	0.078 (0.416)
R-meas	0.2027 (1.642)	0.2341 (2.466)	0.085 (0.451)
R-pim	0.06938 (0.6427)	0.08188 (0.8885)	0.0330 (0.1720)
CC1/2	0.991 (0.586)	0.996 (0.546)	0.998 (0.963)
CC*	0.998 (0.86)	0.999 (0.84)	1.000 (0.990)
Reflections used in refinement	30804 (2931)	31042 (2999)	31207 (3391)
Reflections used for R-free	1554 (154)	1543 (162)	1307 (142)
R-work	0.2043 (0.2460)	0.1807 (0.3043)	0.2238 (0.3156)
R-free	0.2454 (0.2914)	0.2238 (0.3201)	0.2531 (0.3100)

	CC(free)	0.929 (0.494)	0.952 (0.735)	0.896 (0.865)
Number of non-hydrogen atoms	3531	3562	9807	
macromolecules	3277	3239	9649	
ligands	19	36	108	
solvent	235	287	50	
Protein residues	426	425	1267	
RMS(bonds)	0.008	0.009	0.002	
RMS(angles)	1.10	1.18	0.56	
Ramachandran favored (%)	97.62	97.61	95.34	
Ramachandran allowed (%)	2.38	2.39	4.58	
Ramachandran outliers (%)	0.00	0.00	0.08	
Rotamer outliers (%)	0.80	0.54	0.09	
Clashscore	6.46	1.70	2.09	
Average B-factor	32.66	33.80	91.07	
macromolecules	32.19	33.22	91.26	
ligands	32.70	53.08	81.28	
solvent	39.15	37.94	75.58	
Number of TLS groups	1	9	6	

Statistics for the highest-resolution shell are shown in parentheses.

Table S2

Table S2: Relative binding free energies for inosine Fab screening.

Modified Base	Patch Name	$\Delta\Delta G_{\text{bind}}$	$\pm \sigma$
<i>A</i>	ADE	-0.112	0.172
<i>m</i> ² <i>A</i>	2MA	u.b.	u.b.
<i>m</i> ⁶ <i>A</i>	6MA	1.726	0.186
<i>m</i> ² <i>A</i>	M6A	0.605	0.231
<i>m</i> ⁸ <i>A</i>	8MA	2.721	0.389
<i>m</i> ¹ <i>I</i>	1MI	0.783	0.138
<i>I</i>	INO	0.089	0.024
<i>ms</i> ² <i>m</i> ⁶ <i>A</i>	SMA	-0.037	0.335
<i>ac</i> ⁶ <i>A</i>	6AA	u.b.	u.b.
<i>i</i> ⁶ <i>A</i>	6IA	n.s.	n.s.
<i>ms</i> ² <i>i</i> ⁶ <i>A</i>	MIA	0.598	0.352
<i>ms</i> ² <i>io</i> ⁶ <i>A</i>	SIA	u.b.	u.b.
<i>io</i> ⁶ <i>A</i>	HIA	1.868	0.389
<i>G</i>	GUA	-0.642	0.134
<i>m</i> ¹ <i>G</i>	1MG	u.b.	u.b.
<i>m</i> ² <i>G</i>	2MG	0.286	0.168
<i>m</i> ² <i>2</i> <i>G</i>	M2G	1.057	0.262
<i>preQ0</i>	DCG	-1.737	0.187
<i>imG-14</i>	DWG	-0.005	0.319
<i>imG</i>	IMG	u.b.	u.b.
<i>imG2</i>	IWG	-1.164	0.331
<i>mimG</i>	MWG	u.b.	u.b.
<i>U</i>	URA	-0.926	0.145
<i>D</i>	H2U	u.b.	u.b.
<i>mo</i>⁵<i>U</i>	MOU	-1.656	0.199
<i>m</i> ⁵ <i>s</i> ² <i>U</i>	52U	u.b.	u.b.
<i>m</i> ⁵ <i>D</i>	MDU	0.707	0.161
<i>ψ</i>	PSU	-1.985	0.490
<i>m</i>³<i>ψ</i>	3MP	-1.174	0.446
<i>m</i> ³ <i>U</i>	3MU	-0.146	0.320
<i>s</i>⁴<i>U</i>	4SU	-1.702	0.181
<i>m</i>⁵<i>U</i>	5MU	-1.340	0.159
<i>ho</i>⁵<i>U</i>	5HU	-1.613	0.162
<i>s</i> ² <i>U</i>	2SU	-0.644	0.233
<i>m</i>¹<i>ψ</i>	1MP	-0.896	0.112
<i>cnm</i>⁵<i>U</i>	CYU	-2.147	0.233
<i>mcm</i>⁵<i>s</i>²<i>U</i>	70U	-1.379	0.330
<i>mchm</i> ⁵ <i>U</i>	CMU	-0.612	0.381
<i>ncm</i>⁵<i>U</i>	BCU	-1.683	0.393
<i>mcm</i>⁵<i>U</i>	OCU	-1.307	0.312
<i>mcmo</i> ⁵ <i>U</i>	OEU	-0.491	0.396
<i>C</i>	CYT	u.b.	u.b.
<i>m</i> ⁵ <i>C</i>	5MC	u.b.	u.b.
<i>ac</i> ⁴ <i>C</i>	4AC	u.b.	u.b.
<i>m</i> ⁴ <i>C</i>	4MC	u.b.	u.b.
<i>f</i> ⁵ <i>C</i>	5FC	0.596	0.265
<i>hm</i> ⁵ <i>C</i>	HMC	u.b.	u.b.
<i>s</i> ² <i>C</i>	2SC	u.b.	u.b.

"Patch Name" = 3-letter name assigned by Xu et al. (2016)

Modifications with $\Delta\Delta G \leq -0.7$ kcal/mol in bold italics.

Table S3

Modified Base	Patch Name	$\Delta\Delta G_{\text{bind}}$	$\pm \sigma$
A	ADE	0.300	0.165
<i>m</i> ² A	2MA	3.084	0.156
<i>m</i> ⁶ A	6MA	-0.034	0.032
<i>m</i>⁶₂A	M6A	-2.091	0.052
<i>m</i> ⁸ A	8MA	4.432	0.337
<i>m</i> ¹ I	1MI	n.s.	n.s.
I	INO	6.247	0.301
<i>ms</i> ² <i>m</i> ⁶ A	SMA	2.634	0.209
<i>ac</i>⁶A	6AA	-1.156	0.197
<i>i</i> ⁶ A	6IA	1.624	0.491
<i>ms</i> ² <i>i</i> ⁶ A	MIA	3.587	0.434
<i>ms</i> ² <i>io</i> ⁶ A	SIA	n.s.	n.s.
<i>io</i> ⁶ A	HIA	n.s.	n.s.
G	GUA	4.881	0.471
<i>m</i> ¹ G	1MG	3.029	0.521
<i>m</i> ² G	2MG	u.b.	u.b.
<i>m</i> ² ₂ G	M2G	n.s.	n.s.
<i>preQ0</i>	DCG	4.229	0.283
<i>imG-14</i>	DWG	u.b.	u.b.
<i>imG</i>	IMG	n.s.	n.s.
<i>imG2</i>	IWG	u.b.	u.b.
<i>mimG</i>	MWG	-2.437	0.441
<i>U</i>	URA	u.b.	u.b.
<i>D</i>	H2U	2.841	0.242
<i>mo</i> ⁵ <i>U</i>	MOU	1.861	0.459
<i>m</i> ⁵ <i>s</i> ² <i>U</i>	52U	3.817	0.504
<i>m</i> ⁵ D	MDU	1.520	0.25
<i>ψ</i>	PSU	3.564	0.531
<i>m</i> ³ <i>ψ</i>	3MP	n.s.	n.s.
<i>m</i> ³ <i>U</i>	3MU	n.s.	n.s.
<i>s</i> ⁴ <i>U</i>	4SU	n.s.	n.s.
<i>m</i> ⁵ <i>U</i>	5MU	1.270	0.519
<i>ho</i> ⁵ <i>U</i>	5HU	0.965	0.305
<i>s</i> ² <i>U</i>	2SU	2.830	0.705
<i>m</i> ¹ <i>ψ</i>	1MP	3.044	0.663
<i>cnm</i> ⁵ <i>U</i>	CYU	2.396	0.282
<i>mcm</i> ⁵ <i>s</i> ² <i>U</i>	70U	n.s.	n.s.
<i>mchm</i> ⁵ <i>U</i>	CMU	2.686	0.235
<i>ncm</i> ⁵ <i>U</i>	BCU	n.s.	n.s.
<i>mcm</i> ⁵ <i>U</i>	OCU	1.113	0.402
<i>mcmo</i> ⁵ <i>U</i>	OEU	3.469	0.527
<i>C</i>	CYT	5.033	0.708
<i>m</i> ⁵ C	5MC	n.s.	n.s.
<i>ac</i>⁴C	4AC	-1.199	0.325
<i>m</i> ⁴ C	4MC	2.159	0.287
<i>f</i> ⁵ C	5FC	2.275	0.422
<i>hm</i> ⁵ C	HMC	u.b.	u.b.
<i>s</i> ² C	2SC	u.b.	u.b.

"Patch Name" = 3-letter name assigned by Xu et al. (2016)

Modifications with $\Delta\Delta G \leq -0.7$ kcal/mol in bold italics.

Figure S1

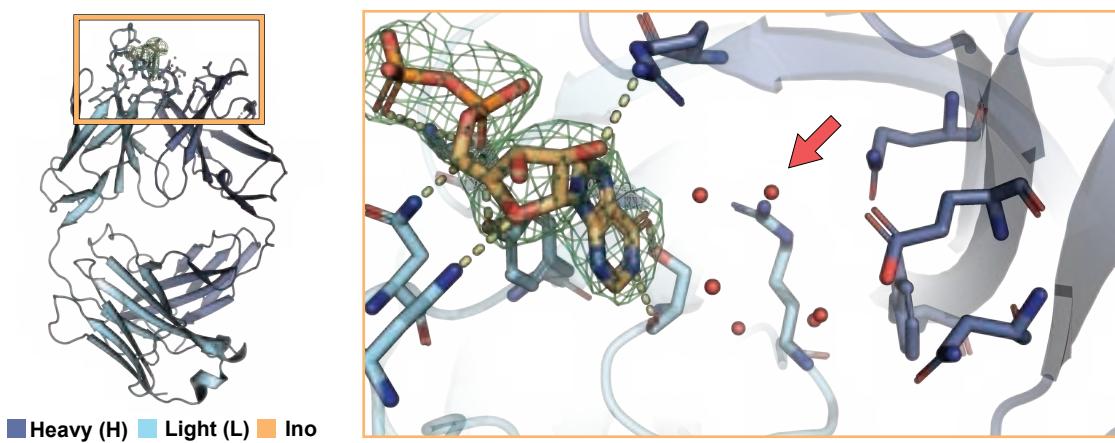


Figure S1

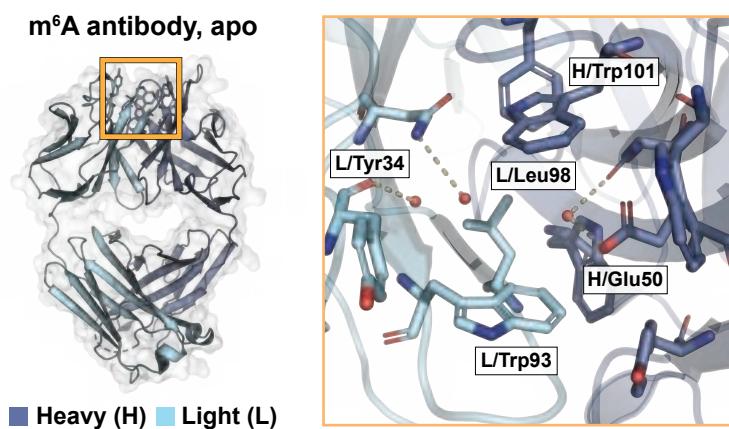


Figure S3

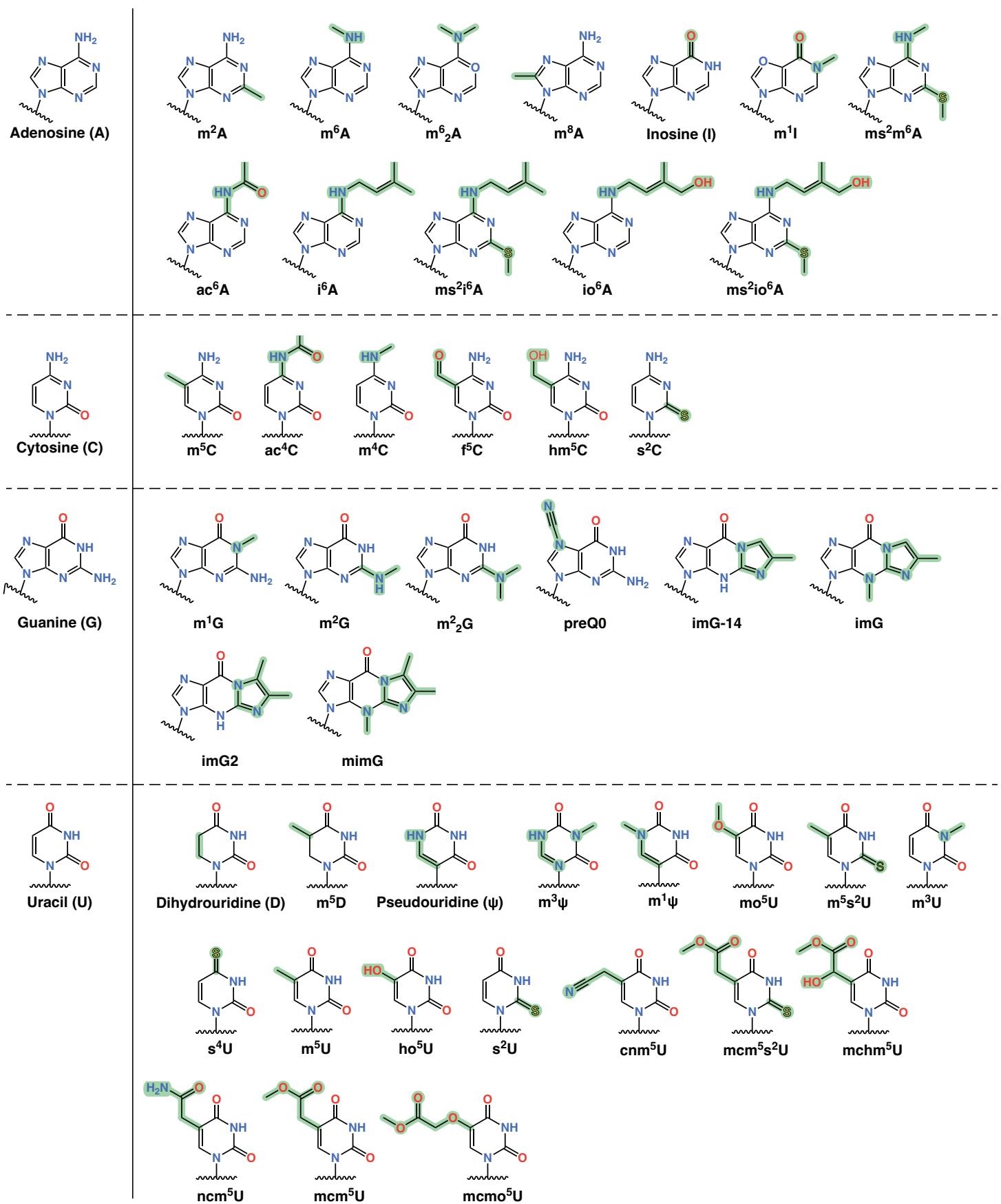
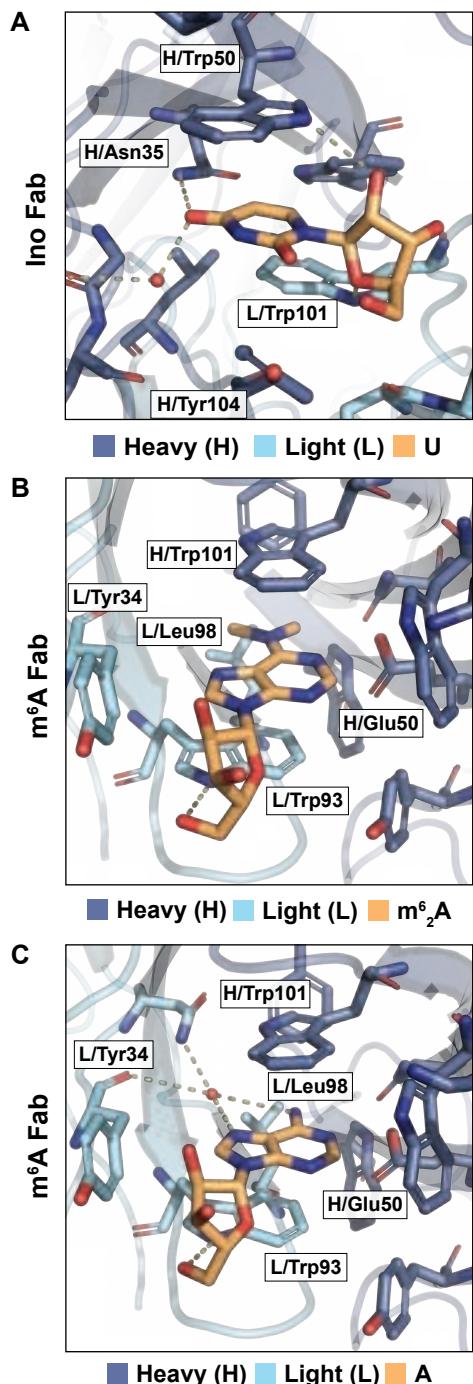



Figure S6

D Inosine antibody ELISA results, t-test p values. $p < 0.01$ in bold italics.

Concentration (ng/ml)	I vs. C	U vs. C	A vs. C	I vs. U
1000	0.008176	0.000068	0.231657	0.022235
100	0.005824	0.000199	0.371234	0.006713
10	0.000112	0.079051	0.703358	0.000115
1	0.000376	0.828319	0.872158	0.000401
0.1000	0.030556	0.608653	0.650652	0.032961
0.0100	0.289681	0.795255	>0.999999	0.284906
0.0010	0.390739	0.366411	0.421648	0.507010
0	0.593139	0.350393	0.507644	0.440630

E m^6A antibody ELISA results, t-test p values. $p < 0.01$ in bold italics.

Concentration (ng/ml)	m^6A vs. C	A vs. C	m^6_2A vs. C	m^6A vs. A
100	0.000007	0.001121	0.000043	0.004438
33.300	0.000017	0.000294	0.000005	0.001808
11.100	0.000034	0.000209	0.000024	0.005227
3.700	0.000009	0.000072	0.000017	0.002905
1.230	0.000055	0.001183	0.001946	0.000026
0.412	0.086944	0.342808	0.080748	0.239781
0.137	0.723367	0.72624	0.506021	0.974438
0	0.799706	0.959434	0.884815	0.781924